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A study is made of the group 0(5)x U(1). The group is economical in the 
number of gauge bosons, which we associate with each of its generators, and is 
anomaly-free. The left-handed leptons L~-= (re, e,/x, v~,)t, are assigned to the 
four-dimensional spinorial representations of 0(5). The right-handed particles 
are taken to be the singlets of the group. The theory has three sets of gauge 
bosons: (1) analogues of the GWS model, (2) additional charged gauge bosons, 
and (3) a set of three additional neutral gauge bosons as compared to the GWS 
model. We introduce neutrino mixing by mixing the additional charged gauge 
bosons. We develope a theory of neutrino oscillations in matter in such a way 
that in the absence of matter the scattering length reduces to the usual scattering 
length in vacuum. Even if the neutrino masses are equal or the neutrinos are 
massless, we still have neutrino oscillations in matter, a result already noted by 
Wolfenstein. 

1. I N T R O D U C T I O N  

Many  features of the weak in teract ion p h e n o m e n a  can be expla ined  
by the SU(2)  x U(1) gauge model  of weak and  electromagnet ic  interactions.  
This model  was or iginal ly given by Glashow (1961), Weinberg  (1967), and  
Salam (1968) (GWS).  It was later extended to inc lude  four quark  and  four  
lep ton  flavors, which satisfy the G l a s h o w - I l i o p o u l o s - M a i n i  ( G I M)  

(Glashow et al., 1970) mechanism.  M a n y  extensions of the GWS theory 
have been  in t roduced  for certain specific purposes  (e.g., Langaker,  1981). 

One  possible way of ex tending  the theory is to employ larger groups,  which 
increases the n u m b e r  of gauge bosons  compared  to the original  model .  We 
have used the group 0 ( 5 ) x  U(1).  The group 0 ( 5 )  is anomaly-free  and  
economica l  in the n u m b e r  of gauge bosons ,  which, in our  work we associate 
with each of its generators.  
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In Section 2 we sketch the relevant mathematics and in Section 3, 
besides giving the table of quantum numbers and defining the charge 
operator, we introduce neutrino mixing by mixing the additional charged 
gauge bosons. In Section 4 we summarize the usual procedure for obtaining 
neutrino oscillations in vacuum. Section 5 deals with neutrino oscillations 
in matter. Section 6 discusses the results. 

2. THE RELEVANT MATHEMATICS 

By using the method of Brauer and Weyl (1935) of constructing the 
spinorial representations for higher dimensional groups, we construct the 
four-dimensional spinorial representations of the five-dimensional rotation 
group 0(5). The set of five 4 x 4 hermitian anticommuting matrices Fa is 
made to satisfy the the following relation: 

F*~ = Fa, {Fa, Fb} = 2i~abI, where a, b = 1 , . . . ,  5 (1) 

! is 4 x 4 unit matrix, and 

F1 -- ~'1~(1) ~v Vl~(2) , F2 = Ol~(1) ,.v ~'2~(2), F3 = 0"~ 1) X I 
(2) 

F4 -~. O'1(1) X'* 0" 3(2), F 5 : 0"21) X I 

The superscripts (1) and (2) refer to two distinct sets of Pauli matrices and 
the symbol x stands for the direct product. The generators are given by 

Fab = - l iFaFb,  a ~ b (3) 

The restriction is imposed due to the antisymmetry of F~b. Explicitly written 
out, the matrices read 

F4= 0 Fs= 
o" 3 0 ' i x l  

and the generators are given as follows: 

(4) 
- iXl)o  

1 1 1 3 3 0, 
F'5=21 , -0-,0 , F23=2 -i0-2 0 I '  F24=2 ~ 0 0-, 

1 1 1 0 
F25 = 2  ( ;2 - ; 2 ) '  F34 = 2 (/00"3 - i0-3~ 

1 0 5 

(5) 
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The generators satisfy the following commutation relations: 

[Fab, Fca] = i( SaeVba -- ~bcFaa + ~bdF,~r -- ~,aFbc) (6) 

forming the corresponding Lie algebra. 
For our purposes it is convenient to consider the algebra in a different 

basis, 

{F,, F45, FT}, i = 1, 2, 3 (7) 

defined by 

F 1 --= F23 , F 2 = El3 , F 3 = FI2  (8 )  

F1 = F,44- iF, s, F:~ = F24 + iF2s, F~ = F34 2~2 iF35 (9) 

Among the above set of generators using equation (6), in particular, the 
following commutation relations can be established: 

[F~, F•] = +2F45 (i not summed) 

[F4s, F~] = +F~ (10) 

[F45, Fi] =0 (11) 

[ E ,  Fj] = ie~kFk (12) 

From equation (10) we see that for every value of i (= 1, 2, 3) the set of 
generators {F4s, F~} and from equation (12), the other one, i.e., {F~}, form 
su(2) subalgebras. Since the charge operator equation (13) is defined using 
the generator F4s, equations (10) and (11) indicate that the generators Fi 
and F~ are the eigenvectors of the charge operator with the eigenvalues 0 
and + 1, and that the charge is invariant under the group O (5) and eventually 
under the larger group 0(5) x U(1). 

3. THE O(5)x U(1) MODEL 

This model has ten gauge fields W~j (i < j  = 1 , . . . ,  5) transforming as 
0(5) generators and a singlet vector gauge field W~ We assign the left- 
handed leptons to the four-dimensional spinorial representation of 0(5) 
and denote these multiplets by L~ = (re, e,/~, v~)L. The right-handed parti- 
cles are taken to be the singlets of the group. We give the eigenvalues of 
the operators F45 and Fo for the leptons in Table I. 

Table I. Leptons 

UeL, R eL, n IJ~L,R PkLL, R 

Q o - 1  - 1  o 

v4, �89 -~,o - L o  Lo 
V o - 1 , 0  - 1 , - 2  - 1 , - 2  - 1 , 0  
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The eigenvalue of Y45 of the operator F45 is taken to be zero for the 
right-handed particles, as they are singlets and do not belong to the four- 
dimensional representation of 0(5). In terms of 0(5)  and U(1) generators 
the charge operator is given as 

Q =  F45"Jc-lFo (13) 

It is possible to define a basis for the gauge bosons such that in the 
Lagrangian equation (19) certain linear combinations of the gauge field, 
for example, ( 1 / H ) (  24 �9 25 tWo, ), can W.  ~: be universally coupled to the charged 
currents ~eLy"l(1 + yS)eL and ~.LY~'�89 + yS)IZL rather than the separate 
ones W~ 4 and W~ s. We define 

Fc = F12, Fo = F 1 3 ,  F~ = F23 , FF = / 7 4 5  
(14) 

• 1 ~ • 1 = ~ 1 • 
F u = - ~ F 1 ,  F v = ~ F 2 ,  F w = ~ F 3  

and the corresponding basis for the gauge particles is taken as 

C.  = W~ 2, O~, = W~ 3, E .  = W 23, Fu = W 45 

i i 
• W .  ~ iW~ 5) (15) Wl. x ::~lWp.), Vp~_:~=~ ( 34 U/x  = ::[: ~ ( 1 4 .  15 • 

• 1 24 - 25 

Denoting the gauge couplings for the groups 0(5) by g and for U(1) by 
1 t ~g, we can express the couplings of the fermion currents to the gauge 
bosons (with 5 defined as the Dirac conjugate of a) and the abbreviations 

aL--= �89 3:)a, ag =-1(1- y5)a 

a3,'b --, ti"/"�89 + 3:)b 

by the following interaction Lagrangian 

Lint=g 2 (~bLT~FuWqtbL) 
i<j 

_�89 - ~ 0 - ,~ 0 +/ZLy W~.tZL+ V~.i_'y W~.V.L) 

-- 2(~n3' ~ W ~ en + ~RY" W~ (16) 

Furthermore, defining 

J~.(em) = - ~ y ' e  - / 2y ' t z  (17) 

J.L = --~LY~'eL-- liLT~'IXL + ~L yuVer + f'.LTUV.L (18) 
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we can rewrite the interaction Lagrangian as 
/ 1 Lint=g wo j~ (e rn )+~(gF~  , o - g  W~,)J~L 

+ lgC~ ( f'eL]/~PeL -- eLy~eL + ]~L'YP'I'I*L -- ~t~LY ~ P.u.L) 

+ �89 ( lleL~lP'l}tzL "~ eL')/~I, ZL  -- F~L"y'~eL -- ~p.L'ygl. 'eL) 

+ ~gE,, ( ~,'y'~,,~L - eL~"9~L --/2~,'e,_ + ~ ,~ '~  ~,~) 

+ (1/4~)gU~(a, ,_r '~e, . -  ~,.Lr'~m.) + h.c. 

+ ( 1 / x / 2 ) g V , ( v ~ t y  tZL+ f'~,Ly~eL) +h.c. 

+ (l/x/2)gW+(~eLy~eL + ~,Ly~/~L) + h.c. (19) 

Now consider the interaction of the gauge fields U~ and V + with the 
leptons. If  the physical boson fields U~ and ~'+ are linear combinations 
defined by 

U ~ =  "+ (cosO)U~+(sinO)V~+ 
(20) 

~+ - ( s in  + + V,~= O)U~+(cos  O)V,~ 

we can reexpress the last two terms of equation (19) containing U + and 
V~ as 

U~[(UeL cos 0+  ~L sin O)y~eL--(--~eL sin 0+  U~,L COS O)y~/ZL] 

"+ - " O)y~eL+(f'~LCOS 0+~,~Lsin O)y'~l.~L] (21) + V~[(--UeL sm 0+  ~ / z L  C O S  

The last two terms are forbidden, as they allow the possibility of 
flavor-changing charged current weak interactions. However, we keep these 
terms, as the lepton number change associated with these terms occurs at 
the instant of decay and not in the subsequent evolution of the neutrino 
state vector (Commins and Bucksbaum, 1983). We further define 

Veo = (cos 0)re + (sin 0)z 5, 
(22) 

V~o = - ( s i n  0)ue + (cos O)v, 
" +  

Now, if W~, is the physical gauge boson instead of  W +, we may replace 
the last term in equation (19) by 

(l/~/-2)gW.( 1.'eLO~l e L At- ~l.xLO')fu'l.~L) -}- h.c. (23) 

In a similar way, if ~ and /~,~ are considered the physical gauge 
bosons, then the terms containing C~, and E~, can be respectively replaced 
by 

1 ~ - /z 
~gCp.  ( 12eLO~t/ 1)eL 0 -- e.L'Yt~eL "t- I~L'y:"eL + ~t.tLO')/~ 1]eL 0 ) 

+ ~gE~ (U~LO7 UeLO -- 6Ly~'t~L -- 12Ly~eL + ~LO')/1"~ l"eLO) 
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The term containing D .  remains invariant under  replacement v~ --> b'e0 , 
V~. "-> V~.O. Regarding F~. and 1 ~  as the physical gauge bosons, one redefines 
equations (17) and (18) with v~, v.  replaced by V~o and v.o, respectively. 

4. THE NEUTRINO O S C I L L A T I O N S  

In view of our present work for neutrino oscillations in matter, we 
summarize here work done (e.g., Commins and Bucksbaum, 1983) on 
neutrino oscillations in vacuum. Consider a neutrino formed in the state 
IV~o} at a time t = 0 and if Ire) and Ivy) are assumed to have time evolutions 

Ivy(t)) = exp(-iE~tlh)]v~(O)) 
- ( 2 4 )  

Iv. (t)) = exp(-iE~Jlh)lv.(O)) 
where 

/~u 2 ~=2 ~1/2 2 1/2 = ( p ~ +  = (p2+m~o) 
e f ! t  Ve ) 

~ 2  ~1/2 + m2 ~1/2 

Also, we have assumed 

P~e = P~ = P 

Equation (22) evolves to 

I I,'eO ( t ) )  = exp(-iE~et ] h )1 v~ (0)) cos 0 

+ e x p ( - i E ~ t  I h)] v,, (0)) sin 0 (25) 

This can be written as 

[v~o( t) = {[exp(-iE~otlh ) cos 2 0 + e x p ( - i E .  tlh ) sin 20]lv~o(O)) 

+ (cos 0 sin O)[exp(-iE.JIh )-exp(-iEJjh)]jv,,o(O)) (26) 

The probabili ty for a neutrino originally in the state Ivy) to be in the 
state Iv.)  at time t is given by 

P( ve'~, v~) 
=l(v,.lVe(t)l 2 

= (cos 2 0 sin 2 0)1 exp(-iE=tlh)-exp(-iE=Jlh)l 2 

= �89 e 2 0)[ 1 - cos(E~ - E~.)t[ hi (27) 

I f  a neutrino beam travels a distance R in time t, putting R = Ct and 
assuming p >> rn~., m~ ,  we can rewrite equation (27) as 

( m2 - rn~C2 ) 
P(ve'~+v,.)=�89 1 - c o s  ~" R (28) 

2p 



0(5) X U(1) Electroweak Gauge Theory 43 

The neutrino oscillation length is defined by the equation 

2 2 C 2 21rR m~ - m,~ R = - -  
2p h L 

where L is the oscillation length 

L=4~rhp/ m 2 2 C 2 ( ~, - m ~) (29) 

In view of the fact that usually data on three neutrino flavors are 
analyzed supposing that the dominant part comes only from one pair of 
neutrinos (i.e., coming back to the case of two neutrino flavors), even a 
detailed calculation for the dominant contribution would lead to the same 
result as given in equations (28) and (29). 

5. NEUTRINO OSCILLATION IN MATTER 

In realistic situations neutrinos pass through matter. It would be inter- 
esting to consider the possible effects of matter on the neutrino oscillations. 

For a neutrino passing through matter in the Z direction, if its state 
v(0,0) at t=O and Z = O  is known, then its state v(t, Z)  at finite t and Z 
can be written as 

v(t, Z)  = l,(0, O) exp(-iE~t[h) exp(iKn~Z) (30) 

where n~ is the refractive index of the scattering substance and is given by 
(Commins and Bucksbaum, 1983) 

n~ = 1 + (21rN/ KZ)f~(O) (31) 

where N is the number of identical scattering centers per unit volume and 
g is the wave vector in the direction of the scattered wave (K = go is the 
incident wave vector), f~(0) is the forward scattering amplitude. 

Thus, using equation (30), one can recast equation (22) as follows: 

Veo(Z, t ) =  cos 0 exp(iKn~eZ ) exp(-iE~etlh)v ~ 

+ sin 0 exp( iKn~Z)  e x p ( - i E . t ]  h) v. (32a) 

V.o(Z, t )=  - s in  0 exp( iKn~eZ ) exp(-iE~dlfi ) v. 

+ cos 0 exp( iKn~Z)  e x p ( -  iE~t[ fi) v~ (32b) 

Furthermore, reemploying equation (22), one obtains from equation 
(32a) the following relation: 

IPeo( Z, t)) = [exp( iKnvoZ) exp(-iEvdlfi  ) cos 2 0 

+ exp( iKn~Z)  e x p ( -  iE~t]fi ) sin 20]lv.o ) 

+ (sin 0 cos O)[exp(iKn~Z) exp(-iE~t[f i)  

- exp( iKn~ Z )  exp( -  iE~otl fi ) ][ v~o) (33) 
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The probabili ty for a neutrino originally in the state Veo(t, Z )  at time 
t and at the point Z to be in the state [v.o) is given by 

[( V.olVeo( Z, t))l 2 = �89 2 20){1 - cos[(E~. - E~e)t[h + (n.  e - n~.)[KZ)]} (34) 

We observe that the argument of  the cosine function consists of  a part 
dependent  on time and a part  dependent  on space. For vacuum the refractive 
indices n~ e = n~. = 1 and hence the time part  survives. This reduces to the 
case where the medium is vacuum. 

It is interesting to note that even if m~. = rn.~ or m~ = myo = 0, neutrino 
oscillations exist and in this case the oscillation length l"  is given by 

27r/l '~=(n~ - n ~ ) K  

as already noted by Wolfenstein. 

6. D I S C U S S I O N  OF RESULTS 

In this work we consider only two lepton generations and specifically 
discuss Ve and v. oscillations in matter. Oscillations in matter among other 
neutrino flavors can be similarly discussed, as is now rather trivial. However,  
we have not yet at tempted our technique in detail with three lepton gener- 
ations. In this work it is observed that even if the neutrinos Ve and v, have 
the same mass or are massless the neutrino oscillations do exist. This result 
was already noted by Wolfenstein. 

It may also he noted that CPT invariance implies the following relation 
for the corresponding antineutrino oscillations: 

P( f'~ <'-'> f'e) = P(  Pe <-'-> V~ 
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